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Riemann solver. This is accomplished by introducing a constant resolved state between
the states being considered, which introduces sufficient dissipation for systems of conser-
vation laws. Closed form expressions for the resolved fluxes are also provided to facilitate
numerical implementation. The Riemann solver is proved to be positively conservative for
the density variable; the positivity of the pressure variable has been demonstrated for
Multidimensional Euler ﬂows. when the divergence in the fluid velocities is suitably restricted so as to prevent
Conservation laws the formation of cavitation in the flow.

Euler We also focus on the construction of multidimensionally upwinded electric fields for
MHD divergence-free magnetohydrodynamical (MHD) flows. A robust and efficient second order
accurate numerical scheme for two and three-dimensional Euler and MHD flows is pre-
sented. The scheme is built on the current multidimensional Riemann solver and has been
implemented in the author’s RIEMANN code. The number of zones updated per second by
this scheme on a modern processor is shown to be cost-competitive with schemes that are
based on a one-dimensional Riemann solver. However, the present scheme permits larger
timesteps.

Accuracy analysis for multidimensional Euler and MHD problems shows that the scheme
meets its design accuracy. Several stringent test problems involving Euler and MHD flows
are also presented and the scheme is shown to perform robustly on all of them.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Riemann solvers have long been recognized as being an important building block for robust and accurate schemes for
conservation laws. Consequently, much attention has been lavished in the computational fluid dynamics community on
the design of efficient Riemann solvers. Exact Riemann solvers for Euler flow have been formulated by Godunov [29] and
van Leer [51]. While van Leer [51] had originally presented an efficient Newton iteration procedure for evaluating the exact
Riemann problem for Euler flow, several authors have tried to build more efficient approximate Riemann solvers. The pre-
mise underlying this enterprise is that much of the information provided by the Riemann solver is indeed never used in the
construction of a numerical flux. Thus there is the two-shock Riemann solver of Colella [15], the two-rarefaction fan Riemann
solver of Osher and Solomon [39], the linearized Riemann solver by Roe [41], the HLLE Riemann solver [31,21] and the HLLC
Riemann solvers [22,50,10]. All of the above-mentioned Riemann solvers resolve the discontinuity at a zone boundary into a
one-dimensional foliation of waves.
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Despite this spate of rather good one-dimensional Riemann solvers, some practitioners have always believed that the
one-dimensional Riemann solvers lose much of their efficacy in multidimensional problems. Indeed the motivation for
thinking so stems from the fact that these Riemann solvers cannot account for flow features that might be propagating trans-
verse to the zone boundary. The one-dimensional Riemann solvers are, therefore, biased to pick up flow variations that are
orthogonal to the zone faces of a computational mesh. It is believed that the directional bias that is built into one-dimen-
sional Riemann solvers causes a reduction in the permissible Courant number in multidimensional flow. Consequently, some
practitioners have attempted to use the one-dimensional Riemann solvers in very intricate combinations in order to achieve
multidimensional upwinding [16,48,35]. This form of multidimensional upwinding did indeed enable the design of schemes
that operate with an increased Courant number, even though it sometimes came at the expense of solving a rather large
number of one-dimensional Riemann problems.

Other researchers tried to build more complex models for multidimensional wave propagation [42,45]. Early successes
emerged with the work of Abgrall [1,2] and have been followed up by the work of other practitioners [24,25,28,13]. These
authors attempted to obtain a multidimensional analogue of Roe’s linearized Riemann solver. Thus a mean state was chosen
at each edge of the computational mesh and the linearized, two-dimensional Euler equations were evolved in space and time
to obtain a multidimensional solution of the Riemann problem. While elegant, this procedure only works for the Euler equa-
tions. It cannot be applied to any other hyperbolic system without a substantial amount of reformulation. The HLLE Riemann
solver, on the other hand, works transparently for any conservation law. This prompted an early attempt by Wendroff [52] to
formulate a multidimensional HLLE Riemann solver. Wendroff’s formulation introduced nine constant states, which made
his scheme unwieldy. To keep it tractable, he had to artificially expand the signal speeds to handle supersonic situations,
which further increased dissipation. By contrast, the multidimensional HLLE Riemann solver that is presented here is much
simpler and naturally accommodates all the supersonic cases. The flux calculation is also much simpler in this work, yielding
closed form expressions for the fluxes that are easily implemented on a computer. Moreover, the positivity of our multidi-
mensional HLLE Riemann solver is easily demonstrated, whereas such a demonstration eluded Wendroff. Consequently, one
of the goals of this paper is to present our multidimensional HLLE Riemann solver and provide sufficient amount of detail to
facilitate numerical implementation. We also wish to demonstrate the performance of this Riemann solver when it is applied
to the computation of multidimensional Euler flows. We, therefore, present details of a spatially and temporally second order
accurate scheme for Euler and magnetohydrodynamic (MHD) flows that uses our multidimensional HLLE Riemann solver as
a building block.

In recent years it has become interesting to apply techniques drawn from higher order Godunov schemes for hydrody-
namics to other hyperbolic systems of conservation laws. These systems are usually larger and more complicated and an
evaluation of their eigenstructure carries a greater computational complexity. Thus methods for constructing Riemann solv-
ers that do not rely on evaluating the eigenvectors are favored. The MHD system provides a case in point. Ever since the anal-
ysis of the MHD eigensystem by Roe and Balsara [43] it has become possible to design robust, efficient, one-dimensional,
linearized Riemann solvers for numerical MHD [14,3]. An HLLC Riemann solver, capable of capturing mesh-aligned contact
discontinuities, was presented by Gurski [30]. Miyoshi and Kusano [37] drew on Gurski’s work to design an HLLD Riemann
solver for MHD. In addition to contact discontinuities, the HLLD Riemann solver was also capable of capturing mesh-aligned
Alfven waves. It is, therefore, one of the goals of this paper to present the performance of the multidimensional HLLE Rie-
mann solver on multidimensional MHD problems.

A multidimensional Riemann solver has a utility in numerical MHD that goes beyond the construction of upwinded fluxes.
The magnetic fields in the MHD system satisfy the property that they remain divergence-free for all time. Brackbill and Barnes
[11] have shown that violating the divergence-free aspect of the magnetic field leads to unphysical plasma transport orthog-
onal to the magnetic field. One possible resolution is to formulate constrained transport schemes [12,20,23] which collocate
magnetic fields at zone centers and use edge-centered electric fields for their divergence-free update. Another solution might
be to modify the MHD equations [40] at the expense of introducing source terms in the momentum and energy update equa-
tions, thus relinquishing momentum and energy conservation. Dedner et al. [19] have formulated another kind of modifica-
tion of the MHD system where the divergence that builds up in the magnetic field is propagated away at a predetermined
signal speed. Soon after the advent of higher order Godunov schemes for MHD, Dai and Woodward [18], Ryu et al. [47]
and Balsara and Spicer [9] formulated higher order Godunov methods that kept the magnetic field divergence-free. The essen-
tial idea in Balsara and Spicer [9] was to rely on the dualism between certain components of the upwinded flux vector that is
evaluated at zone faces and the electric fields that are sought at the zone edges. By using the facially upwinded fluxes to obtain
the edge-centered electric field components, the previous authors introduced a modicum of upwinding into the evaluation of
the electric field. However, Balsara and Spicer [9] were acutely aware of the need for multidimensional upwinding and pro-
vide a whole section in their paper on that issue. Subsequent efforts have drawn on the same dualism between the electric
fields and flux components. However, recent work has tried to increase the amount of dissipation from one-dimensional Rie-
mann solvers to obtain more stable multidimensional upwinding [36,27]. There has also been work on using a genuinely
divergence-free reconstruction and collocating the one-dimensional Riemann solvers at zone edges [5-7] so that a more accu-
rate representation of the electric field can be obtained. It is, however, difficult to know what this multidimensional upwind-
ing at the zone edges ought to be without having a multidimensional Riemann solver for MHD in hand. The multidimensional
Riemann solver presented here is general enough to be applied to any hyperbolic system of conservation laws, including MHD.
Since our multidimensional HLLE Riemann solver is applied at zone edges and yields two sets of upwinded fluxes, our further
goal in this paper is to use it to obtain properly upwinded electric fields at zone edges for MHD calculations.
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Multidimensional Riemann solvers have sometimes been perceived as being too complicated or difficult to implement.
Part of this perception stems from the fact that most users of traditional higher order Godunov codes are accustomed to
a dimension by dimension approach for building the update terms. This simplifies the scheme by requiring the fluxes to
be evaluated at facial boundaries. The present Riemann solver, like most multidimensional Riemann solvers, is implemented
at zone edges, which does require a slight paradigm shift in the implementer’s thinking. The fluxes in the present Riemann
solver are, however, very easy to build, requiring no more evaluations than those that would have been made for a one-
dimensional HLLE Riemann solver. The method presented here easily extends to any hyperbolic conservation law. The ap-
proach in this paper is shown to work on a large number of stringent test problems in two and three dimensions. In return
for the slightly greater complexity of implementation, the resulting scheme can operate with larger CFL numbers. The mul-
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Fig. 1. Depicts a situation where four neighboring zones meet at an edge. (Think of the zones as having an extension in the third dimension.) The four zones
lie in each of the four quadrants of the xy-plane. The origin O of the xy-plane denotes the edge shared by the four zones. The solution vector and fluxes in the
first quadrant are denoted by a subscript RU (right-up); those in the second quadrant are shown by a subscript LU (left-up); those in the third quadrant have
a subscript LD (left-down); those in the fourth quadrant carry a subscript RD (right-down). The waves start propagating outward from the originat t=0.Ina
time t = T, the waves propagate out to x = SgT and x = S; T along the x-axis and out to y = SyT and y = SpT along the y-axis. The rectangle QMNR bounds the
domain that will be affected by the waves.
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Fig. 2. The left panel shows the wave model that we adopt for the propagation of waves in two space dimensions and one temporal dimension. Points in
space-time that are contained within the inverted, dark gray, rectangular pyramid in this figure are within the range of influence of the initial discontinuity.
The wave model circumscribes the actual waves propagating out of the initial discontinuity at O. The right panel shows the plane x = 0 from the left panel

along with the x-directional fluxes that propagate through different portions of that face. Thus the resolved flux F* propagates through the unshaded area;
the flux Fi* propagates through the light gray area and the flux Fi"* propagates through the dark gray area.
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tidimensional Riemann solver also provides an unambiguous evaluation of the multidimensionally upwinded electric field in
divergence-free formulations for MHD.

The plan of this paper is as follows: Section 2 presents the multidimensional HLLE Riemann solver. Section 3 examines
multidimensional upwinding as it applies to computing edge-centered electric fields in MHD. Section 4 briefly describes
the second order accurate predictor—corrector scheme that uses the multidimensional Riemann solver described here. Sec-
tion 5 presents an accuracy analysis for Euler and MHD flows, showing that the schemes meet their design accuracy. Section
6 presents some stringent multidimensional test problems drawn from Euler flow. Section 7 does the same for MHD flow.
Section 8 presents conclusions. In an Appendix A we show that our Riemann solver always produces positive densities for
Euler and MHD flows. In that same Appendix A we also demonstrate the pressure positivity of our Riemann solver for Euler
flows when the divergence of the velocity lies in certain ranges so as to exclude multidimensional cavitations.

2. Multidimensional HLLE Riemann solver

We divide this section into three subsections. Section 2.1 gives the derivation of the multidimensional HLLE Riemann sol-
ver. Section 2.2 provides an analogous multidimensional LLF Riemann solver. Section 2.3 gives details on how the multidi-
mensional fluxes are to be assembled at zone faces and considers the restrictions placed on the timestep.

2.1. Derivation of the multidimensional HLLE Riemann solver

Consider an N-component system of conservation laws
09U + 0xF + 9,G = 0. (1)

Here U is the vector of conserved variables and F and G are the flux vectors in the x- and y-directions. Say that we want to
formulate a multidimensional HLLE solver on Cartesian meshes, or on any logically rectangular mesh. Fig. 1 shows a sche-
matic diagram of such a situation where the four zones that come together at an edge are shown by the four quadrants of the
coordinate system. The edge itself is located at the origin O. The initial conditions for this multidimensional Riemann prob-
lem consist of four constant states, Ugy, Uy, Uyp and Ugp, in the first, second, third and fourth quadrants, respectively, as
shown in Fig. 1. A mnemonic strategy for remembering the subscripts RU, LU, LD and RD is given in the figure caption of
Fig. 1. We assume that we can identify the largest right- and left-going wave speeds emerging from that edge and denote
them by Sk and S;. These could be obtained, say for instance, by considering two x-directional HLLE Riemann solvers, one
located immediately above the x-axis and another immediately below the x-axis. Thus the speeds Sg and S; represent the
maximal right- and left-going speeds obtained from both those Riemann solvers. We can similarly identify the largest up-
ward and downward-going wave speeds emerging from the same edge and denote them by Sy and Sp. Einfeldt [21] and Bat-
ten et al. [10] provide prescriptions for obtaining these one-dimensional extremal speeds, and the same can be used here in
multi-dimensions. Thus let )Ll(URu) and }.f(’ (Ury) denote the smallest and largest x-directional wave speeds respectively in the
state Ugy with corresponding definitions for the other states. Let 2} (Uyy, Ugy) and /Y (Uyy, Ugy) be the smallest and largest
x-directional wave speeds from a linearized Riemann solver that is applied between the states U,y and Ugy with similar def-
initions for the other pairs of states. Make similar definitions for the y-direction. The extremal speeds Sk, S;, Sy and Sp are
then given by

Sg = max ()-LV(URU)., 7 (Ugp), 2N (Uyy, Ugy), 2N (Upp, Urp)),
Sy = min (),1( (Uy), i,l‘ (Uwp), 1,1( (Uy, Ury), 5-,]‘ (Urp, URD))7

Iy Y 2
Sy = max (fly(URu% iﬁ,v(ULU)M}IY(URmURUL i;,v(ULD7ULU)>7 @

Sp = min (7)1, (Urp), /1;, (Urp), j-;/(URDaURU)s Z};(ULD7 ULU)>~

Dissipation is produced in the one-dimensional HLLE Riemann solver by assuming a constant state that lies between the
left and right states. As long as the extremal speeds are based on a physically sound choice, the presence of this constant
state introduces the requisite amount of dissipation. In multiple dimensions, this domain will likely be a circle or ellipse.
However, in the interest of a simple formulation, we assume that the cell-break problem is started at t = 0 and that by a time
t = T the constant state fills the rectangle shown in Fig. 1. The left panel of Fig. 2 shows the simple wave model that we adopt
for the propagation of waves in two spatial dimensions and one temporal direction. Since this wave model circumscribes the
actual waves that propagate out from the initial discontinuity, it will provide adequate amount of dissipation in multi-
dimensions. Later we show that it can even account for all the supersonic cases in multiple dimensions.

As in the one-dimensional HLLE Riemann solver, we wish to identify the fluxes at the boundaries of the space-time do-
main being considered. Associated with the constant state Ugy in the first quadrant, we can evaluate the x- and y-fluxes Fgy
and Ggy which prevail at the line segments MA and MC, respectively, see Fig. 1. The constant state Uy in the second quadrant
yields the fluxes F;y and Gy at the line segments NB and NC, respectively. One can draw on the constant state U, in the third
quadrant to evaluate the fluxes F;p and G;p which correspond to the line segments RB and RD, respectively. Likewise, the
constant state Ugp in the fourth quadrant yields the fluxes Frp and Ggp at the line segments QA and QD, respectively.
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For the one-dimensional HLLE Riemann solver, the constant resolved state, U*, is obtained by carrying out a two-dimen-
sional integration of the conservation law in space-time. The derivation of that resolved state is most easily obtained if one
begins by considering the subsonic case. For that reason, we start our derivation by assuming the situation where S; < 0 < Sk
and Sp < 0 < Sy. (We will show how this assumption is relaxed before the end of this Section.) For our present spatially two-
dimensional problem, the constant resolved state, U, can be obtained by integrating the conservation law, Eq. (1), over a
three-dimensional rectangular prism in space-time. The base of this rectangular prism at t = 0 is given by the rectangle
QMNR in Fig. 1. The set of vertices that make up this rectangular prism in space-time is given in the (x,y, t) coordinate system
by {(SkT,SuT,0), (S.T,SyT,0), (S.T,SpT,0), (SkT,SpT,0), (SkT,SuyT,T), (S.T,SuT,T), (S.T,SpT,T), (SkT,SpT,T)}. Integrating Eq.
(1) over this rectangular prism gives (after an obvious cancellation of a factor of T?)

U (Sg — S1)(Su — Sp) — UruSkSu + UrpSrSp + UruS1Su — UrpSiSp + (Fru — Fu)Su — (Fro — Fip)Sp + (Gru — Gro)Sk
— (G — Gp)S. = 0. (3)

The above equation can now be written as

U — UrySrSu + UipS1Sp — UrnSrSp — UrwSiSu (Fru — Fru)Su — (Fro — Fin)Sp + (Gru — Grp)Sg — (Gru — Gip)St 4)
(S — S1)(Su — Sp) (S = S1)(Su — Sp) '
The previous equation yields the resolved state for the multidimensional Riemann problem.
It is interesting to observe several aspects of the resolved state given in Eq. (4). First, notice that when the variation is
confined to be in the x-direction we have

Uy =Upp and Uy =Up = Fry=Frp, Fiy=Fip, Gry=Grp and Gy = Gpp. (5)

In that limit we obtain

_ SRUry — 51Uy — (Fry — Fy) (6)
B Sk—St ’

Eq. (6) is just the familiar formula for the resolved state of the one-dimensional HLLE Riemann solver in the subsonic case.
We see, therefore, that in the subsonic case our multidimensional Riemann solver produces the expected resolved state
when all the variations are one-dimensional. A similar reduction occurs when all the variations are confined to the y-direc-
tion. Notice though that in all other situations the resolved state always picks up multidimensional variations that are not
contained in the one-dimensional resolved state. This is as one would expect for a multidimensional Riemann solver.

We now focus on obtaining the resolved x- and y-fluxes, F* and G’, respectively, for our multidimensional Riemann solver.
Again, we first restrict attention to the subsonic case but we will relax that assumption later on. Our derivation will become
easier if we make the following simplifying definitions, each of which has a self-evident meaning within the context of the
one-dimensional HLLE Riemann solver. Thus we define

U

HLLE __ Sk B S, SeS, )
FU - {SR -5 Fuu Sk =St Fro + Sk—S; (Ury = Uw), )
HLLE __ Sk S, SeS,
o= {SR - SL} e {SR - SL} Fro + {SR - SJ (Uro — Up), @)
GHLLE — U _|Gpp — 57'3 Gry + ﬂ (Ury — Ugp) o
R = 1Sy = Sp RD Su—Sp RU S-S, RU ),
and
Hie _ | Su Sp SuSs
« = {Su - SD} Cio {SU - SD:| G+ [Su - SD} Uiy — Upp). (10)

We will try to express the resolved x- and y-fluxes in terms of the above four familiar definitions because they also make it
easy to identify those parts of the fluxes that carry the dissipation terms and those parts of the fluxes that carry the genuinely
multidimensional contributions.

To obtain F, the resolved x-flux from the multidimensional Riemann solver, we have again to integrate the conservation
law from Eq. (1) over a three-dimensional rectangular prism in space-time. The base of this rectangular prism at t = 0 is
given by the rectangle QMCD in Fig. 1. The set of vertices that make up this rectangular prism in space-time is given in
the (x,y,t) coordinate system by {(SkT,SuT,O0),(0,SyT,0), (0,SpT,0), (SkT,SpT,0), (SkT,SuyT,T)(0,SyT,T), (0,SpT,T),
(SkT,SpT,T)}. To simplify the derivation, we first evaluate the area integral on the x = 0 face. Notice that the multidimen-
sional wave shown in Fig. 2 will not reach all points on that face. As a result, we only have two x-directional Riemann prob-
lems operating on those parts of the x = 0 face that are not overtaken by the multidimensional wave. The x = 0 face is shown
separately in the right panel of Fig. 2 along with the fluxes that propagate through parts of that face. The area integral of the
x-flux on the x = 0 face is, therefore, given by

1 1 1

stTZFﬁLLE - j5DT21=3LLE +5(Su - Sp)T*F". (11)
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Integrating the conservation law, Eq. (1), over the rectangular prism that we have identified in this paragraph yields (after an
obvious cancellation of a factor of T?)

1
2
After a certain amount of algebraic simplification Eq. (12) yields
_ l:LUSRSU + l:RDSLSD - l:LDSRSD - l:RUSLSU _ 2 SRSL (
(SR —S)_)(SU —SD) (SR _SL)(SU _SD)
SkSt
+ m [SU(URU — ULU) — SD(URD — U]_D)]. (13)
Eq. (13) is useful because it allows us to pick out the contributions from the x- and y-fluxes as well as the dissipation term.
We see that the first term in Eq. (13) is a convex combination of x-fluxes. This is the non-dissipative part of the x-flux. The
second term contains the contribution from the y-fluxes to the resolved x-directional flux. Any genuinely multidimensional
Riemann solver should include such contributions from the fluxes in the transverse direction. Observe that the contribution
from the y-fluxes to Eq. (13) depends on the relative magnitudes of Sg and S;. Thus the amount of transverse flux contributed
to the resolved x-flux depends on the direction and speed with which signals propagate in the x-direction. Notice though that
for smooth flow, the contribution from the y-fluxes is small. The last term in Eq. (13) contains the dissipation terms.

It is useful to observe that the dissipation terms in Eq. (13) only provide dissipation in the x-direction; there are no dis-
sipation terms in the y-direction. At strong shocks, and especially at strong oblique shocks, there are no dissipation terms in
Eq. (13) corresponding to the y-direction. At such shocks the contribution from the second term in Eq. (13), i.e. the terms
with the y-fluxes, can become significant. There is no further y-directional dissipation term corresponding to the y-fluxes
at strong shocks, as a result, the only strategy for stabilizing the x-flux at strong shocks is to have a shock detector and trun-
cate the second term in the vicinity of strong shocks. If the underlying numerical method has a shock detector [17,7] it pays
to suppress the contribution of the transverse terms in the vicinity of shocks. Thus we introduce a flow-dependent parameter
B that smoothly goes to zero in the vicinity of a shock. At all other locations in the computation we set g = 1. The final form
for the resolved flux is then written as

1

* 1 *
U (SU — SD)SR — URUSRSU -+ URDSRSD + FRUSU — FRDSD — FSLLESU + ngLLESD — EF (SU — SD) -+ (GRU — GRD)SR =0. (12)

F

Gru — Grv + Gip — Gro)

% l:LUSRSU + l:RDSLSD - l:LDSRSD - l:RUSLSU SRSL
F = -2 Gry — Gy +Gp — G
(Sk = St)(Su = Sp) P =550 — 5 (G~ G+ Co = Go)
SkS
t e |[Sy(Ugy — Ury) — Sp(Ugp — Upp)]. (14)

(Sr = S1)(Su — Sp)

By comparing Eqs. (13) and (14), we see that the latter equation restricts the contribution of the transverse fluxes at strong
shocks. It is interesting to point out that in their analysis of multidimensional schemes for scalar advection Roe and Sidilk-
over [44] also found that the transverse fluxes have to be restricted in certain situations. This completes our description of
the method for obtaining the resolved flux F* from the multidimensional HLLE Riemann solver.

A particularly compact and interesting form for the resolved flux F* is given by

* SU HLLE SD HLLE SRSL
F = {SU — SD} F, ™ - {SU — SD:| F, ™ —-2p {m (Ggru — Gy + Gip — Grp). (15)
This is also the form that is most useful for computations. Notice that when the variation is confined to be in the x-direction,
Eq. (15) reduces appropriately. Consequently, for x-directional variations we have F* = Fi"f — FI"E_ For genuinely multidi-
mensional problems notice two important features of Eq. (15). First, observe that the first two terms of Eq. (15) represent a
linear weighting of the regular HLLE fluxes F;"* and FI"E, The weighting is simply proportional to the relative areas of the
rectangles BAMN and BAQR from Fig. 1, which lends itself to a very simple geometrical interpretation. Second, we see that the
third term of the resolved flux picks up extra contributions from the y-directional fluxes.

To obtain G, the resolved y-flux from the multidimensional Riemann solver, we have to integrate the conservation law
from Eq. (1) over a three-dimensional rectangular prism in space-time. The base of this rectangular prism at t = 0 is given by
the rectangle AMNB in Fig. 1. We do not provide all the steps in the derivation of G* because they are very similar to our
previous derivation. We simply quote the final form of the resolved flux G* in a compact form as

* SR :| HLLE |: SL :| HLLE |: SUSD
G = GME — | G — 28| —2L2 | (Fry — Fuy + Fip — Fp). 16
[SR—SL R Sk—Si| k ﬁ(sR—sL)(sU—sD)(R” w -+ Fio — Fro) (16)

Just like Egs. (15), (16) lends itself to an elegant physical interpretation.

Up to this point we have focused on the transonic case. There is a very simple way in which the flux formula is generalized
to handle the supersonic case in the one-dimensional HLLE Riemann solver. The structure of Eqs. (7)-(10) suggests that the
same might work here. Thus we assert that Eqs. (15) and (16) easily extend to all possible supersonic cases if the signal
speeds are reset as

St — min(S;,0), Sg — max(Sg,0), Sp — min(Sp,0), Sy — max(Sy,0). (17)
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We consider three interesting examples below:

(1) Say we originally start with a situation where S; > 0 and Sp > 0. It corresponds to a physical problem where all the
waves in the Riemann problem are propagating supersonically into the first quadrant. The use of Eq. (17) in Egs.
(15) and (16) and also Eqgs. (7)-(10) then yields F* = F;;y and G* = Ggp, i.e. the Riemann solver indeed picks out the cor-
rect upwinded fluxes that would be contributing to the first quadrant. Notice, quite interestingly, that this is not
obtained by an arithmetic averaging of the fluxes at the four faces that come together at the edge. Later in this paper
we will see that this example also yields insights into the process of obtaining edge-centered electric fields in schemes
for divergence-free MHD.

(2) Let us consider another example where we originally have S; < 0 < Sg and Sp > 0. The use of Eq. (17) in Eq. (15) then
shows us that F* does not depend any more on Fi"E, which is as one would expect from the upwinding. Notice though
that F* still depends on Fi"E, Furthermore, F* continues to depend on the y-fluxes, though their contribution dimin-
ishes as Sy increases.

(3) In this example, let us consider a situation where we originally start with S; > 0 and Sp < 0 < Sy. Now F* depends
exclusively on F;y and Fyp, i.e. it picks up the requisite upwinding in the x-direction. Notice, however, that the y-fluxes
do not contribute to F*.

Appendix A demonstrates that the Riemann solver designed here keeps the density positive for Euler and MHD flows. We
also demonstrate that when the velocities are restricted so as to preclude multidimensional cavitations in the flow, our Rie-
mann solver keeps the pressure positive.

2.2. Multidimensional LLF Riemann solver

It is also possible to obtain an LLF (or [46]) variant of the fluxes in Eqgs. (13) and (16) by setting

S = max(|Sg|, S, [Sul,1Spl); Sk —S; Si—-S; Su—S; Sp—-S (18)
to get
.1 1 S
F = Z(FRU + Fry + Frp + Fip) + iﬂ(GRU — Gy + Grp — Ggp) — Z(URU — Uy + Ugp — Upp) (19)
and
.1 1 S
G = 2 (Gru + Grp + Gy + Grp) + iﬁ(FRU —Fy +Fip — Frp) — 2 (Ury — Ugp + Uy — Upp). (20)

The first terms in Egs. (19) and (20) contain the contribution from the dissipation-free x- and y-fluxes, respectively at the
edge being considered. The second terms in Eqs. (19) and (20) contain the contribution from the fluxes in the transverse
direction. The last terms in Egs. (19) and (20) contain the dissipation terms.

2.3. Assembling the multidimensional fluxes at zone faces and timestep considerations

The previous subsections have provided the derivation of the multidimensional HLLE Riemann solver without specifying
how one should assemble the final flux at each zone face of a two-dimensional zone. As shown in Fey [24], Brio et al. [13] and
Kurganov et al. [34] the multidimensional flux has to be assembled at a zone face by considering the contributions coming
from a one-dimensional Riemann solver evaluated at the center of the zone face and the multidimensional Riemann solvers
evaluated at the corners of that face. Consider the zone in Fig. 3 and say that its sides have a length of Ax andAy in the x- and
y-directions. The zone is denoted by indices (i,j) with appropriate half-integer notational extensions to denote zone faces
and corners. Fig. 3 shows the evolution of Riemann problems at all the faces and all the corners of the two-dimensional zone
for a time At. In other words, at each zone face we also solve a one-dimensional Riemann problem in addition to solving the
multidimensional Riemann problem at each corner. As time At increases, the multidimensional Riemann problems at each of
the corners make an increasingly larger contribution to the facially and temporally averaged fluxes at the zone faces. This is
especially true in the subsonic cases shown in Fig. 3. These multidimensional contributions have a beneficial and stabilizing
effect on the one-dimensional flux, because they represent the contribution from the cross-terms that arise when making a
Taylor expansion of the original partial differential equation. With the help of Fig. 3 we can arrive at a space-time averaged
version of the flux F,1/2; at the (i + 1/2,j) face. As shown in Fig. 3, Fi,1,2; is the resolved x-flux coming from the one-dimen-
sional Riemann solver at the (i +1/2,j) face, F;,; 5;,,,, is the resolved x-flux from the multidimensional Riemann solver at
the corner (i+1/2,j+1/2) and F;,, »; ;, is the resolved x-flux from the multidimensional Riemann solver at the corner
(i+1/2,j—1/2). The final expression for the multidimensionally corrected, space-time averaged x-flux is given by

= " At " At " At
Fiv12j = Fiiq)0j|1 = Suinizj-12 — Spivi2j+1/2) 2Aay| ~ Fi12j01250i11/24+172 24y +Fi1 21250025172 28y (21)

Eq. (21) is so designed that it extends seamlessly to the supersonic limits when Eq. (17) is applied to the wave speeds.
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Fig. 3. Shows the evolution of Riemann problems at all the faces and all the corners of a two-dimensional zone for a time At. As time At increases, the
multidimensional Riemann problems at each of the corners make an increasingly larger contribution to the facially and temporally averaged fluxes at the
zone faces. This is especially true in the subsonic cases shown here. The solid arrows in this figure show the propagation of waves; the dashed arrows show
the fluxes.

We see from Fig. 3 that even in the extreme limit where the waves emanating from the multidimensional Riemann solv-
ers at (i+1/2,j+1/2) and (i +1/2,j — 1/2) touch each other at the x-face, the flux F;,1,; gets a contribution of at least
F;.;),;/2 from the one-dimensional Riemann solver. This is inevitable considering that Eq. (21) is a space-time average eval-
uated over the x-face. The condition that the waves emanating from the corners of any face in Fig. 3 should not intersect each
other is explicitly given by

At < min ( Ax Ax Ay Ay >

SRi-1/24+1/2 — SLi+1/24+1/2 SRi-1/2j-1/2 — SLi+1/2j-1/2 Suit1/2j-1/2 — Spit1/24+1/2  Sui-1/2j-1/2 — SD.i-1/24+1/2

(22)

In practice we might make the less restrictive requirement that F;,; 2 should be a convex combination of the fluxes
Fi12j Fiaj2jii2 and Fyy 55 4 5 in Eq. (21). This allows us to double the timestep constraint in Eq. (22), yielding a maximum
CFL number of unity. Thus the final constraint on the timestep for two-dimensional flow is given by

2AX 2Ax 2Ay 2Ay )
SR.i—l/Z.j+1/2 - SL.i+1/2j+1/2 75R,i—1/2.j—'l/2 - SL,i+1/2J—1/2 7SU‘i+1/2j71/2 - SD.,i+1/2.j+1/2 7SU‘i—l/2.j—1/2 - 5D,i—1/2.j+1/2 ’

(23)

In practice, the timestep is evaluated using the conventional zone-centered approach. Eq. (23) only serves to illustrate that a
larger CFL number might be possible. This completes our description of timestep constraints in two dimensions.

There is, however, a deficiency in Eq. (21) that becomes apparent to those who are familiar with the old ENO schemes
from the 1980s, see Harten et al. [32]. Notice that Eq. (21) changes form as the waves at the edge change direction and speed.
Thus the weights ascribed to the fluxes F;,; »;, Fi,1;.1/, and F;; »; ;, in Eq. (21) keep changing. This is tantamount to hav-
ing a rapidly changing stencil. As with the old ENO schemes, this results in a loss of accuracy in certain circumstances. For
that reason, we prefer to incorporate the multidimensional Riemann solver using a Simpson rule which fixes the relative
weights of the fluxes and yields

At < min(

1., 1.,
Fii1p)= éFi+1/2J+1/2 + gFm/zJ‘ + éFH»]/Z‘]?l/Z’ (24)
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Please note that Eq. (24) may relinquish some of the timestep advantages of Eq. (21), but in practice it permits timesteps that
are quite large without ever degrading the order of accuracy. Eq. (24) is formally third order accurate if the fluxes F;,; »;.1/,
and F;,, »; ,, are evaluated at the upper and lower x-face using the multidimensional Riemann solver and if the flux F, , ; is
evaluated at the center of the x-face. Notice however that during the evaluation of F; ; ,;.,, and F;,; ,; ;, we do evaluate
the x-directional HLL fluxes at the x-face. That is, we are referring to the two HLLE fluxes at the x-face that are evaluated
using just the variables and their moments in zones (i,j) and (i + 1,j). If one is willing to accept second order accuracy then
those two x-directional HLL fluxes can be averaged to the center of the x-face to yield a second order accurate approximation
for F;,, ;. This is the economical choice that we made for the applications that we present later. Eq. (24) is also trivially ex-
tended to three dimensions, especially when one only desires a second order scheme. Thus in three dimensions an easy way
of evaluating an x-flux at the upper x-face of the zone (i, j, k) while using the multidimensional Riemann solver at the edges of
that face consists of extending Eq. (24) as

= 1 1 1 1 2

Fip126 = éFiil/Z.jH/Z,k + éF;:rl/Zj—]/Z.k + gFi*H/Zj,kH/Z + éF?+1/2j,I<—l/2 + gF;+]/2j,k' (25)

Eq. (25) and its analogues in the other two directions were used to evaluate the fluxes in all the three-dimensional calcula-
tions shown here. As with Eq. (24), if we want a second order accurate scheme then F;, ,;, in Eq. (25) does not need to be
evaluated but can be obtained via an averaging process.

3. Multidimensional upwinding of edge-centered electric fields in MHD

In Section 3.1 we obtain explicit expressions for the electric field for MHD using the multidimensional Riemann solver
from the previous section. In Section 3.2 we put the present work in context by comparing it to expressions for the electric
field obtained from prior research.

3.1. Electric field expressions from the multidimensional HLLE Riemann solver

The three-dimensional MHD system can be written in flux conservation form, o;U + o,F + 9,G + 9,;H =0, as

p PUx pUy
PUx pv? +P+B*/8n— B /AT pUxvy — BBy /AT
oy pvyvy — BB, /4T pv2+P+B*/8m — B, /A
a | pv, 5} pvxv, — BB, /AT 0 pvyv, —B,B, /4T
a| ¢ | Tox| (e+P+B/8myn,—B(v-B)dn | "9y | (¢4 P+B/8m)v, — B,(v-B)/4n
B« 0 —(vxBy — v,By)
B, (vxBy — vyBx) 0
Bz _(UZBX - vaz) (UyBZ — UZBy)
pv:
pvxv, — BB, /AT
pvyv, — BB, /4T
L9 pv:+P+B’/8n—B2/4An o 26)

0z | (¢+P+B?/8m)v, — B,(v-B)/4n
(v:Bx — vxB;)
—(vyB; — v:By)
0

where p is the density; vy, v, and v, are the velocity components; By, B, and B, are the magnetic field components;
&= pv?/2+P/(y—1)+B*/87 is the total energy and y is the ratio of specific heats. Note though that the divergence-free
update equation for the magnetic field is still given by

oB

E +cVxE= 0,
where E is the electric field vector. The speed of light “c” cancels out in Eq. (27). Consequently, for the sake of simplicity, we
do not carry it in the ensuing equations. Balsara and Spicer [9] realized that there is a dualism between the fluxes that are
produced by a higher order Godunov scheme and the electric fields that were needed in Eq. (27). We see that the flux com-
ponents of Eq. (26) obey the following symmetries:

Ex:*Gg :H7; Ey:FSI*Hs; Ez—*F7:GS-

E;—%vx& (27)

(28)

The last three components of the F, G and H fluxes could also be reinterpreted as electric fields in the dual approach. The
electric fields are needed at the edge centers as shown in Fig. 4 and are to be used to update the face-centered magnetic
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Fig. 4. Showing the collocation of face-centered magnetic fields and edge-centered electric fields in a constrained transport method.

fields. For example, on a Cartesian mesh with zone sizes Ax, Ay and Az a one-step, second order accurate discretization of the
x-component of the magnetic field in Eq. (27) yields

Enﬂ En At

ir1/2jk = Brivi2jk — M (AZEnH/Z AZEnH/Z + AyEnH/Z . AyEnH/z ) (29)

Zi+1/2§+1/2k — zi+1/2j-1/2.k yi+1/2jk-1/2 Vii+1/2,j,k+1/2

Here B"

i1/2,0 and Byrly o are the facially-averaged magnetic fields at times ¢" and t*'! = " + At and the time-centered elec-

tric field components E; ;1% , , and E};!{?,. | ,, are collocated as shown in Fig. 4. Details on implementing CT schemes
that are based on higher order Godunov methodology are provided in [5] and [9]. Using these magnetic and electric fields
in Eq. (29) and its analogues in the other two directions then yields a divergence-free, i.e. constrained transport, update strat-
egy. In this section we focus on obtaining the upwinded forms of the z-component of the electric field at the z-edges of the
zone shown in Fig. 4. Eq. (28) shows us that we will, therefore, have to focus on F5, the seventh component of the x-flux, and
Gs, the sixth component of the y-flux.

Let us, therefore, explicitly write out Eq. (13) as it applies to the seventh component of the x-flux, i.e. F;. We see imme-
diately that the seventh component of the y-flux in Eq. (26) is zero. However, the multidimensional upwinding from the Rie-
mann solver that was designed in the previous Section plays an important role in deciding how the electric fields from F; in
Eq. (26) are to be combined. It also provides the structure of the dissipation terms. To obtain a good appreciation of the dis-
sipation terms, realize from Fig. 1 that when a divergence-free reconstruction is used for the magnetic field [4,5] B, is con-
tinuous between the states U,y and Ugy while B, undergoes a jump between those two states. Fig. 1 also shows us that By is
continuous but B, undergoes a jump between the states U;p and Ugp. Thus the jumps in B, produce the dissipation terms in
F5. Using Eq. (13) we therefore get

Fy=—

EZ‘LUSRSU + Ez,RDSLSD - Ez,LDSRSD - Ez,RUSLSU [ SkSL
(SR — SL)(SU — SD) (SR - SL)(SU - SD)
Similarly, realize that B, is continuous but B, undergoes a jump between the states Ugp and Ugy. Likewise, B, is continuous

but B, undergoes a jump between the states U;p and Uyy. Thus the jumps in B, produce the dissipation terms in Gg. Using Eq.
(16) gives us

} [Su(Byru — Byw) — Sp(Byrp — Byip)]- (30)

Gs

_ EZ.RDSRSU + EZ.LUSLSD - EZ,RUSRSD - EZ,LDSLSU |: SUSD
(Sr = S1)(Su — Sp) (Sr = S1)(Su — Sp)

We see that the first terms in Egs. (30) and (31) represent convex combinations of the z-component of the electric fields at
the four zone corners that abut the z-edge, i.e. O in Fig. 1. The second terms in Egs. (30) and (31) carry the dissipation. Notice
that the contributions from the flux components F; and Gg are somewhat different. To obtain a unique z-component of the
electric field at the z-edge, we have to combine the upwinded flux components from Egs. (30) and (31) in a judicious fashion.
We do that next.

Balsara and Spicer [9] were acutely aware that the combination of the upwinded fluxes at zone edges should be carried
out multidimensionally and presented an idea from rotated Riemann solvers [45] to accomplish that. Another approach by

} (Sk(Berw — Beo) — Si(Beww — Beuo). (31)
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Londrillo et al. [36] and Gardiner and Stone [27] consists of retaining the maximal dissipation terms from either direction
while averaging the non-dissipative parts of the flux components. Thus we should suitably average the first terms from
Egs. (30) and (31) while we appropriately combine the second terms from the same equations. (Note that F; is, in fact,
the negative of the electric field.) This yields a stable scheme for magnetic field update. But the scheme still lacks sufficient
cross-term coupling and so its permissible timestep is halved from the desired timestep. There is, however, a modicum of
freedom in how the dissipation terms are to be combined. For example, one could use part of the dissipation terms from
the multidimensional LLF fluxes, Eqs. (19) and (20), because those dissipation terms also introduce cross-term coupling. That
resolved the timestep issues. Thus our final form for the electric field is given by

_ %(Ez,w + Ezrp)(SrSu + S1Sp) — % (Ezru + Ez1p)(SkSp + S1Su)
(Sk = S1)(Su — Sp)

E;

SkSi S
—-(1-a) {m} [SU(By,RU —By1u) — Sp(Byro — By,LD)] + 0171 (By.ru — By,.u + Byro — By1p)
SuS| S
+(1-a) [m] [Se(Beru — Byrn) — St(Beww — Bein)] — 27 (Bery — Bero + Byrw — Byin)- (32)

Here o is a parameter that lies between 0 and 1. Smaller values of o are preferred and we have been able to obtain good
results with o = 0.3. If the underlying numerical method has a shock detector [17,7], the previous references show that it
pays to smoothly increase « to a value of 0.5 in the vicinity of strong shocks. The directional biasing that is usually built into
shock detectors ensures that the detector increases gradually in a zone as a strong shock approaches it. Eq. (27) may be
thought of as a kind of Hamilton-Jacobi equation and the weight of experience, Kurganov et al. [34], has been that such equa-
tions require a larger amount of cross-term dissipation.

Notice that in the subsonic case all of the four electric fields E,;y, E;rp, E.ryv and E,;p in Eq. (32) contribute to the edge in
question. However, they contribute in balanced pairs. To understand the significance of the balanced pairs of electric fields,
consider the supersonic case with the flow propagating supersonically into the first quadrant of Fig. 1. Eq. (17) then gives us
S. = 0and Sp = 0 so that the first term of Eq. (32) becomes (E, iy + E;rp)/2. In light of the first example that was studied after
Eq. (17) we realize that this is the correct upwinded part that one should get on averaging the x- and y-fluxes which is what
we did to obtain Eq. (32) from Egs. (30) and (31). If the flow is propagating supersonically into the third quadrant, we should
get the same term, and we do. Similarly, if the flow is propagating supersonically into the second or fourth quadrants, the
first term of Eq. (32) gives (E;ry + E;1p)/2. We see, therefore, that Eq. (32) does retrieve the correct limits.

3.2. Comparing the present results with prior research

With the present multidimensional Riemann solver in hand, it is also possible to gain insights into previous treatments
for the electric field in numerical MHD with a view to understanding their strengths and developing some perspective on
their weaknesses.

Londrillo and Del Zanna [36] consider the electric field that is obtained from averaging four one-dimensional HLLE Rie-
mann solvers and provide an explicit formula for it in their Eq. (56). It is, therefore, interesting to compare our Eq. (32) and
the analogous Eq. (56) of Londrillo and Del Zanna [36]. Recasting their Eq. (56) in our notation gives

_ EZ.LDSRSU + EZ.RUSLSD - EZ‘LUSRSD - EZ.RDSLSU + SUSD
(S — S1)(Su — Sp) 2(Sy — Sp)
_ % (Byxu — Byuy + Byro — Byin). (33)
We see that their dissipation terms are of the same magnitude, though not the same form, as the ones obtained here. The
upwind terms that their formula would pick out in the supersonic limits are not the ones that we obtain from a careful mul-
tidimensional analysis.

The above paragraph examined electric fields that are obtained from HLLE Riemann solvers. Strategies for obtaining
upwinded, edge-centered electric fields have also been based on other types of one-dimensional Riemann solvers. We exam-
ine those strategies next. Thus, analogous to Eq. (7), let F5’ denote the flux vector from a general one-dimensional Riemann
solver that is applied to the state vectors U,y and Ugy. Again, analogous to Eq. (8), let FBS denote the flux vector from a general
one-dimensional Riemann solver that is applied to the states U, and Ugp. In analogy with Eq. (9), let us use G&° to denote the
flux from the one-dimensional Riemann solver applied to the states Ugp and Ugy. Similarly, Eq. (10) motivates us to use GLRS to
denote the flux from the Riemann solver applied to the states U;p and Uyy. The electric field from Balsara & Spicer [9] or Bal-
sara [5] can then be written as

_ 1 RS RS RS RS
EZ*Z[_<FU)7_<FD )7+(GR )6+<GL >6]' (34)
The numerical subscripts in Eq. (34) denote the component of the flux vector. We see that it lacks the enhanced dissipation

from Eq. (32), with the result that it may need more dissipation on some subsonic and transonic problems. However, as long
as the underlying one-dimensional Riemann solver retrieves the correct supersonic limit, Eq. (34) will pick out the correct

E,

(Bxru — Bxrp + Bxiu — Bxip)
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upwinded limits in all the supersonic cases. This explains why it is a strong performer on problems with strong, supersonic
shocks.

Londrillo and Del Zanna [36] and Gardiner and Stone [27] have presented other strategies for obtaining the electric field
that are still based on the dualism of the flux components and electric fields. Eq. (39) from Gardiner and Stone [27] and Egs.
(41) and (42) of Londrillo and Del Zanna [36] both yield the same form given by

Eo= o [ (B, — (B) + (6), + (6),] - 3 (Besw + et + Euaw + Evio) (35)
Notice that Eq. (35) doubles the dissipation in Eq. (34) in the subsonic and transonic cases, where such a doubling of the
dissipation is needed. As a result, Eq. (35) performs well in the subsonic and transonic limits. The deficiency in Eq. (35) shows
up in the supersonic limit. Say the flow is propagating supersonically into the first quadrant of Fig. 1. One would then expect
that E, should not be independent of any contribution from the downwind direction. Yet, Eq. (35) picks up a piece given by
E, ru/4 which diminishes its ability to perform well on problems with strong, supersonic shocks. One of the algorithms pre-
sented in Gardiner and Stone [27] (which they refer to as the &7 algorithm in their paper) replaces the second term in Eq. (35)
with (E,ry + Ezip + Ez1u + Ezgp) /4 where E, gy is the zone-averaged value of the electric field in the first quadrant and a sim-
ilar notation is applied to all other quadrants. This replacement would further increase the downwind character of their
scheme in the supersonic limits.

A one-dimensional HLLE Riemann solver can indeed be slightly dissipative when compared to its alternatives. When one
must use a different one-dimensional Riemann solver to assemble an edge-centered electric field, a happy compromise
would, therefore, consist of using Eq. (35) for the subsonic and transonic cases and using Eq. (34) in the supersonic cases.
This is easily accomplished because the doubling of the dissipation that is inherent in Eq. (35) can be withheld in each of
the four contributing one-dimensional Riemann solvers when their Riemann fans become supersonic. (All Riemann solvers
do indeed check for their Riemann fans being supersonic because it leads to other computational simplifications that are al-
ways exploited.) Consequently, our simple strategy can be implemented post-facto at the end of any one-dimensional MHD
Riemann solver. It is tantamount to doubling the dissipation in the last three components of the flux vector when the Rie-
mann fan is subsonic and doing nothing when the Riemann fan is supersonic. The four values of the electric fields that come
from such a modified Riemann solver can then be combined as in Eq. (34). This was indeed the strategy that was used in
Balsara et al. [7] and Balsara [6].

4. Brief description of the one-step, second order accurate, predictor-corrector scheme for Euler and MHD flow

The multidimensional Riemann solver presented here is inherently two-dimensional. A three-dimensional extension of
the same is the topic of future research. Just as a one-dimensional Riemann solver is applied to each face and yields one
flux, a two-dimensional Riemann solver is applied to each edge and provides two fluxes in the two directions that are
transverse to the direction of that edge. (Similarly, a genuinely three-dimensional Riemann solver would be applied at
each vertex and would yield three fluxes.) Thus the Riemann solver presented here is applied by visiting each edge
and solving the multidimensional Riemann problem at that edge. For MHD, that process directly yields the electric field
along that edge, see Eq. (32). At each face one would also desire the fluid flux normal to that face for both Euler and
MHD flows. In two dimensions this is obtained by using Eq. (24). Similarly Eq. (25) is used in three dimensions. Recall
too that for a second order scheme the evaluation of a face-centered flux can be simplified in two and three dimensions
in light of the discussion that follows Eq. (24).

The calculation can be structured very economically so that the two-dimensional Riemann solver is applied at each edge
producing two upwinded fluxes as outputs. See Eqs. (15) and (16) for an example of the fluxes, F* and G, that are obtained at
the z-edge. Eq. (24) and its analogue for the y-flux can then be used to assemble the facial fluxes in two dimensions. For a
two-dimensional calculation, one only needs to apply the two-dimensional Riemann solver to all of the vertices of the two-
dimensional mesh. As a result, application of the multidimensional Riemann solver at each of the vertices only results in one
call to the multidimensional Riemann solver per zone in a two-dimensional calculation. In three dimensions, each edge is
shared by four zones. Consequently, a single application of the two-dimensional Riemann solver to all of the three different
edge directions of a three-dimensional mesh is tantamount to making three calls to the two-dimensional Riemann solver per
zone.

We now provide a pointwise description of the one-step predictor-corrector scheme that we used in the examples that
will be presented in the next three Sections. The Riemann solver is called twice at each edge in the course of a timestep. As a
result, the present scheme makes six calls to the multidimensional Riemann solver in the course of updating a zone through
one timestep. Each timestep of the scheme consists of the following six functional sub-steps.

(1) Reconstruct Conserved Variables: For each zone-centered variable, apply a limiter in each of the dynamically active
directions to obtain the undivided differences in those directions.

(2) Reconstruct Magnetic Fields: For face-centered magnetic field components, apply a limiter in each of the two transverse
directions that lie within that face. Use the undivided differences that are produced in those faces to obtain a second
order accurate divergence-free reconstruction of the magnetic field within each zone [4,5]. This step is not needed for
Euler flows.
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(3) Predictor Step: We are now in a position to carry out spatially second order accurate interpolation of variables within a
zone. Likewise, for a magnetic field component, we can carry out second order accurate spatial interpolation within the
face that it belongs to. Owing to the divergence-free reconstruction we can also interpolate any of the magnetic field
components to any location within a zone. Therefore, use that spatial interpolation to produce the four states that go
into the two-dimensional Riemann solver that is applied at each edge. Visit each edge and obtain the fluxes at the faces
for this predictor step. If this is an MHD calculation, obtain the electric fields at the zone edges for this predictor step.

(4) Predicted Time Rates of Update: Use the fluxes to obtain the time rate of update for all the zone-centered variables. This
includes obtaining the time rate of update for the zone-centered divergence-free reconstruction of each magnetic field
component. Likewise, use the electric fields to obtain a time rate of update for the magnetic field components within
each face.

(5) Corrector Step: The time rates of update from the previous step can now be used to make a corrector step that is second
order accurate in space and time. Consequently, use that space-time interpolation to produce the four states that go
into the two-dimensional Riemann solver that is applied at each edge. Notice that unlike the predictor step, the states
in this corrector step are centered in time. Visit each edge and obtain the fluxes at the faces. Also obtain the electric
fields at the edges if this is an MHD calculation.

(6) Second Order Accurate Update: The fluxes and electric fields that are obtained from the previous step are centered in
space and time. They can then be used to make a one-stage update that is conservative, divergence-free and second
order accurate in space and time. See Balsara et al. [7] for an example of such a one-step update.

This completes our description of the timestepping strategy.

The algorithm presented here has been implemented in the author’s RIEMANN code. In light of the interest in large mul-
tidimensional calculations, the implementation was optimized for two and three-dimensional calculations. We made one
implementation for Euler flow and another for MHD flow. On a single Intel Xeon 5500 core operating at 2.4 GHz the Euler
and MHD codes with the multidimensional Riemann solvers update 136,500 and 80,000 three-dimensional zones per sec-
ond, respectively. (In two dimensions, the codes update 415,700 and 196,000 zones per second for Euler and MHD flow.)
A comparable version of the RIEMANN code (that utilizes one-dimensional HLLE Riemann solvers for the predictor and cor-
rector steps) updates 138,600 and 81,250 three-dimensional zones per second for Euler and MHD flow, respectively. The dif-
ference in the speeds is very slight. The implementation of the multidimensional Riemann solver efficiently organizes the
float-point intensive work, doing more calculations per subroutine call. This permits us to amortize the overhead of each
subroutine call in a more expeditious fashion. Subsequent sections show that the small difference in the speeds is handily
compensated for by the larger timesteps permitted by the multidimensional Riemann solver. MHD calculations are espe-
cially benefited by the use of our genuinely multidimensional Riemann solver because it yields a genuinely multidimen-
sional treatment of the edge-centered electric fields. Subsequent sections present accuracy analysis and test problems for
the code described here.

5. Accuracy analysis for Euler and MHD flows

The schemes presented here can easily achieve second order accuracy for one-dimensional problems. Because this is a
paper on multidimensional Riemann solvers, we focus on multidimensional demonstrations of second order accuracy. A
suite of such test problems was presented in Balsara et al. [7]. We present a couple of interesting two-dimensional tests from
that test suite. All the two-dimensional test problems in this section were run with a CFL number of 0.65, though we have
verified that they also run stably and without any appreciable change in the accuracy when run with a CFL number of 0.85.
To provide a point of comparison, all the simulations were first run with a minmod limiter, then they were run with an MC
limiter and lastly they were run with the slopes that can be obtained from the r = 3 WENO scheme of Jiang and Shu [33]. In
other words, the piecewise parabolic part of the reconstruction that can be obtained from the r = 3 WENO reconstruction was
not retained and the stencils were centrally biased.

5.1. Unmagnetized isentropic vortex in two dimensions

In this hydrodynamical test problem from Balsara and Shu [8], an isentropic vortex is made to propagate for a time of 10
units along the diagonal of a periodic domain spanning [-5, 5] x [—5, 5]. The unperturbed flow has unit density, unit pressure
and unit velocities in each of the x- and y-directions. The gas has a ratio of specific heats given by 1.4. The entropy is given by
S =P/p” and density and pressure fluctuations are introduced in such a way as to keep the flow isentropic. The temperature
is defined by T = P/p. A vortex is set up as a fluctuation to the unperturbed flow where the fluctuations are specified by
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Here we set ¢ = 5. r is the radius from the origin of the domain and can be written as r? = x? 4 y2.
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Table 1 shows the accuracy analysis for the multidimensional Riemann solver-based schemes presented here. The errors
are measured in the L; and L., norms for the density variable. We see that the scheme which uses the r=3 WENO slopes
starts out with an intrinsically smaller error than the scheme which uses the minmod limiter. Furthermore, the scheme with
the r=3 WENO slopes reaches its design accuracy immediately, even on very small meshes whereas the scheme with the
minmod limiter has not yet reached its design accuracy for the meshes shown. The MC limiter obtains results that are inter-
mediate between the minmod limiter and the WENO limiter. The schemes with the minmod and MC limiters fail to meet
their design accuracy in the L, norm, whereas the scheme with the WENO limiter succeeds on that front. This inability
of schemes that are based on TVD limiters to meet their design accuracy in the L, norm is closely related to the fact that
TVD limiters clip off extrema in the flow. Along with showing that the multidimensional Riemann solver itself meets its de-
sired specifications, the results also show that it is worthwhile to invest in a higher quality reconstruction algorithm. The
better reconstruction algorithm only costs ~11% more per timestep, yet the data from Table 1 shows that it often enables
us to get almost an order of magnitude improvement in accuracy on meshes of all possible sizes.

5.2. Magnetized isodensity vortex in two dimensions

This MHD test problem was described in Balsara [5]. As with the previous test problem, the vortex moves along the diag-
onal of a periodic domain spanning [—-5, 5] x [-5, 5] for a time of 10 units. The unperturbed flow has unit density, unit pres-
sure and unit velocities in each of the x- and y-directions. The unperturbed magnetic field is zero. The gas has a ratio of
specific heats given by 5/3. The magnetized vortex can now be specified as a perturbation to the flow given by
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Here we set k = 1 and u = V47 which makes the Alfven speed of the vortex equal to its rotational speed. r is the radius from
the origin of the domain and can be written as r? = x? + y2.

Table 2 shows the accuracy analysis for the multidimensional Riemann solver-based schemes presented here. The errors
are measured in the L; and L., norms for the x-component of the magnetic field. As in the previous test, we see that the
scheme which uses the r = 3 WENO slopes starts out with an intrinsically smaller error than the scheme which uses the min-
mod limiter. Consistent with our previous finding, the scheme with the WENO slopes reaches its design accuracy immedi-
ately, even on very small meshes whereas the scheme with the minmod limiter has not yet reached its design accuracy for
the meshes shown. The MC limiter obtains results that are intermediate between the minmod limiter and the WENO limiter.
As in the previous example, both the minmod and MC limiters fail to meet their design accuracy in the L., norm. Thus our
accuracy analysis for this magnetized test problem reinforces our findings from the previous, unmagnetized test problem.
We see here too that the multidimensional Riemann solver meets its design goal. Furthermore, we see that it pays to invest
in a better reconstruction strategy.

6. Multidimensional test problems for Euler flow

In this Section we present a couple of multidimensional Riemann problems and the double Mach reflection problem. The
tests shown here were run with a CFL number of 0.65. The ratio of specific heats was set to 1.4 for all of the problems in this
Section.

Table 1

Shows the accuracy analysis for the two-dimensional, unmagnetized, isentropic vortex problem using schemes that use the multidimensional Riemann solver
presented here. Minmod, MC and r = 3 WENO slopes were used. The errors were measured using the density variable which was compared to the analytical
solution.

Method Number of zones L, error L, order L., error L., order
Minmod limiter 64 x 64 8.0130 x 103 1.5466 x 107"
128 x 128 2.6687 x 1073 1.59 5.9768 x 1072 1.37
256 x 256 9.0798 x 10~4 1.55 2.7398 x 102 1.13
512 x 512 3.3087 x 107 1.46 1.5020 x 102 0.86
MC limiter 64 x 64 2.3608 x 103 6.1816 x 1072
128 x 128 5.5141 x 10~ 2.10 2.7894 x 1072 1.15
256 x 256 1.1895 x 1074 2.22 6.2342 x 1073 2.15
512 x 512 2.3152 x 107> 2.35 1.9041 x 1073 1.71
WENO limiter 64 x 64 1.2598 x 103 2.3001 x 1072
128 x 128 2.3236 x 107 2.43 3.6835 x 103 2.64
256 x 256 4.0201 x 107° 2.53 5.7757 x 10~ 2.67

512 x 512 8.0701 x 10°° 2.32 9.6655 x 107> 2.58
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Table 2

Shows the accuracy analysis for the two-dimensional, magnetized, isentropic vortex problem using schemes that are based on the multidimensional Riem